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Abstract. Decision-making in large and dynamic environments has always
been a challenge for AI agents. Given the multitude of available sensors in
robotics and the rising complexity of simulated environments, agents have
access to plenty of data but need to carefully focus their attention if they want
to be successful. While action abstractions reduce the complexity by
concentrating on a feasible subset of actions, state abstractions enable the agent
to better transfer its knowledge from similar situations. In this article, we want
to identify the different techniques for learning and using state and action
abstractions and compare their effect on an agent's training and its resulting
behavior.
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1 Introduction

Decision-making plays an integral part in artificial intelligence (AI) agents. Being
confronted with a decision-making problem, possible decisions must be identified
first. After that, an agent needs to construct possible action plans and gather
information on them. As a result, the agent can weigh the evidence to choose among
the available options. After having executed the selected actions, the agent will be
able to review its decision based on the observed consequences.

In a reinforcement learning context, we are confronted with a sequential
decision-making problem. Here, the agent stays in interaction with its environment
and continuously selects actions to maximize its reward over time. Over the course of
multiple interactions, the agents gather more information and may revise their
previous decisions in later time steps. Furthermore, the learning agent might have to
face a large variety of situations and have many actions to choose from for handling
any given situation. Thus, effectively re-using the gathered evidence from previous
time-steps is key to optimizing the agent’s performance over time.

Both, search and reinforcement learning algorithms, can struggle to perform well at
training or run-time in either of the two settings. A popular method for improving the
agent’s performance is to implement abstractions [1] of the problem at hand. We
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naturally do this, when designing AI agents with a certain task in mind, by providing
it with the information sources and actions we deem to be relevant, thereby restricting
the agent to the envisioned setting. Thereby, abstractions help the agent to focus its
attention and narrow down the number of relevant alternatives to choose from.

Learning abstractions from experience becomes especially relevant when aiming
for more general AI agents [2]. Many AI agents are presented with exactly the
information they need to solve the given task. However, detecting the relevant
information on your own and abstracting relevant concepts is a non-trivial task but
required for becoming proficient in solving more general problems [3], [4].

This survey shall provide an overview of common abstraction methods for state
and action spaces of Markov Decision Processes (MDP) [5]. Both, reinforcement
learning and search-based algorithms, can make use of such abstractions, to speed up
the decision process and thereby often improve the agent’s performance. In Section 2
we will summarize preliminaries on MDPs, search, and reinforcement learning
algorithms. Section 3 covers methods for state abstraction, whereas Section 4 will
focus on action abstractions. Hybrids of both methods will be covered in Section 5.
The work will be concluded in Section 6 followed by propositions for future research
and applications.

2 Preliminaries

The following sections will summarize preliminaries on MDPs (Section 2.1),
reinforcement learning (Section 2.2), and search algorithms (Section 2.3). On this
basis, we will summarize the research on state and action abstraction in later Sections.

2.1 Markov Decision Processes

To discuss abstractions in more detail, we first review Markov Decision Processes [5]
as a general formalization of a reinforcement learning problem. An MDP is described
by a tuple:

(1)𝑀 =  (𝑆, 𝐴, 𝑇, 𝑅)

where is the state space, the action set, is the state transition function, and is𝑆  𝐴 𝑇 𝑅
the reward function. The state space consists of all the environment states that the𝑆 𝑠
agent can observe. Action set consists of all actions the agent can use to interact𝐴 𝑎
with its environment. The state transition function represents a probability𝑇(𝑠, 𝑎,  𝑠')
function, mapping the current state and the agent’s action to the probability of the next
state . Finally, the reward function provides the agent with a numerical𝑠’ 𝑅(𝑠, 𝑎, 𝑠’)
reward when transitioning from state to via action .𝑠 𝑠’ 𝑎

In the context of an MDP, the agent is in constant interaction with its environment.
Every time-step , the agent observes the state of the environment and chooses an𝑡
action to execute. As a reaction, the environment will change its state and provide the
agent with a reward. The agent’s goal is to choose actions such that it maximizes the
received reward over time.

In terms of the applications, we will discuss in this work, we want to highlight
combinatorial state and action spaces. Combinatorial states are made of multiple
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sensory inputs . Sensors may be part of the same modality (e.g.,𝑠 =  (𝑠
1
,  …,  𝑠

𝑛
)

pixels of a camera-image, or receive data from multiple modalities (e.g., audio, video,
tactile sensors, etc.). Making efficient use of multiple sensors and multiple modalities
may require extensive pre-processing [6] or fusion algorithms [7]. A similar principle
applies to combinatorial action spaces in which each action consists of multiple action
components Those can be commonly observed in robotics and𝑎 =  (𝑎

1
,  …,  𝑎

𝑚
).  

multi-unit games in which multiple independent entities need to be controlled during
every tick of the environment.

2.2 Reinforcement Learning

The theory of reinforcement learning algorithms finds its origin in psychology.
Conditioning, a form of learning stimulus-response associations, describes the
coupling of a neutral stimulus with an unconditional stimulus. Here, the neutral
stimulus becomes a conditioned stimulus and triggers a comparable response in the
subject (cf. [8]). Reinforcement learning algorithms, adopt this principle to train an
agent in arbitrary tasks through continuous feedback. Using a multi-armed bandit, the
associative version of the learning problem can be described [9]. Here, the agent
learns the average value when using an action without changing the state of the
underlying system. If the state is mutable, modeling by Markov decision processes is
resorted to [10]. In this, the agent also receives feedback in the form of a numerical
reward while at the same time changing the state of its environment.

Here, the learning process is fundamentally different from supervised learning.
While the agent is provided with a data set of stimulus-response observations, in
reinforcement learning the agent independently explores its environment. Hereby, a
balance between the exploration of unknown actions and the exploitation of
promising actions must be found continuously. Learning procedures of reinforcement
learning can thus be divided into on- and off-policy procedures. While on-policy
methods always select the currently best-known action, off-policy methods allow the
exploration of actions that have not yet been considered optimal.

Classical methods, also known as tabular methods, such as Temporal Difference
Learning [11] or the Monte Carlo Method [12] determine the expected reward of each
action or state-action pair based on repeated interaction with the system under
observation. If the underlying system is fully known, these values can be determined
by Dynamic Programming [13]. In these classical methods, decisions are made based
on the learned expected reward. Here, this value must be learned for each action
(non-associative), or each state-action pair (associative). This property makes
classical learning methods unusable, especially for large state and action spaces.

The use of neural networks in the context of deep reinforcement learning [14], has
brought fundamental changes for tackling the learning problem. While before, the
observation of the agent and thus the possible state space had to be designed by hand,
the use of neural networks allows the internal reshaping of unstructured state
observations. Here, training the neural network creates an approximation of the
reward signal or an action probability to maximize the reward signal. In contrast to
tabular methods, the network-internal transformation of the input signal can also
approximate the reward of previously unobserved states. While often done implicitly,
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later sections will show how such a network behavior can be actively approached to
learn state and action abstractions.

2.3 Search/Optimization-based Decision-Making

In contrast to reinforcement learning, search and optimization-based decision-making
tries to determine the best action at run-time. Therefore, the agent usually relies on a
forward model to determine the outcome of planned actions and optimize an action
sequence. In cases where the forward model cannot be accessed, it can be
approximated from observation [15–17].

Exhaustive search methods try to simulate all possible action sequences in a
structured manner. Classic tree-search algorithms build a tree starting from the current
state as the root node. Each simulated action is represented as an edge, connecting the
state in which the action has been initialized with the resulting next state. Methods
such as breadth-first search and depth-first search [18] do so without any
optimization. More efficient algorithms, such as the minimax algorithm [19] and
alpha-beta pruning [1] skip infeasible subtrees and have been successfully applied to
games with large state spaces (e.g., chess [20]). Nevertheless, they have shown to be
infeasible for games such as Go which features a state of approximately states10170

[21].
Due to the large branching factor and the sheer number of possible states,

exhaustive search often takes too much time to compute a result. Instead, heuristic
search methods can be used to approximate the optimal action given a sample of the
gam tree. Methods such as flat Monte Carlo [22] and Monte Carlo Tree Search
(MCTS) [23] achieve this by simulating the outcome of multiple action sequences. To
focus the search, these methods balance the exploration and exploitation of available
options [22], whereas during exploration we aim to find good actions that have not
been analyzed yet and during exploitation, we further analyze parts of the game tree
that has shown good results so far.

In contrast to tree-search methods, optimization-based methods try to directly
optimize an action sequence. Algorithms such as the Rolling Horizon Evolutionary
Algorithm (RHEA) [24, 25] do so, by using an evolutionary algorithm to improve
multiple candidate action sequences throughout several generations. Once the
algorithm terminates, the first action of the best sequence will be applied.

In contrast to reinforcement learning, search- and optimization-based methods can
be used without any prior training since necessary evaluations are done at run-time.
This made them especially relevant in more general domains, such as general
game-playing [26, 27] and general strategy game-playing [28, 29], in which the agent
needs to act in a previously unknown environment. Nevertheless, they struggle with
optimizing long action sequences and high branching factors. For this reason, they are
commonly applied in environments with simple state and action spaces. The
performance for more complex scenarios can be improved by methods of state and
action abstraction, which will be detailed in the following sections.
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3 State Abstractions

In a state abstraction, we intend to reduce the complexity of the decision-making task,
by mapping from the history of previously visited states to a state in the compact𝐻
state space [30]. In early papers, the abstraction has solely been based on a mapping𝑆’
of the current state to another state in the compact state space , whereas𝑠∈ 𝑆 𝑠’∈ 𝑆’

. Those methods have been designed for MDPs of the first degree, which makes𝑆'≪𝑆
the mapping independent of previously visited states. In either way, the decision space
become more compact, and the agent’s effort is reduced. For simplicity, we will
constrain the following discussion on MDPs of the first degree as well. The following
categories of state abstractions have been proposed by Konidaris [2] and served as a
guideline to structure this review. We extend his work with an updated summary of
the state-of-the-art and an overview of state abstraction in highly structured state
spaces as they can be commonly observed in path planning. An overview of discussed
methods is presented in Figure 1, whereas each type of method will be discussed in
the following sections, respectively.

Fig. 1. Overview of the Types of State Abstraction Algorithms.

3.1 Bisimulation Approaches

Bisimulation approaches aim to construct a minimized MDP with similar properties
as the original one. Such model minimization approaches are often variations of
automaton minimization algorithms. The state space abstraction by Boutilier and
Dearden [31] solves a factored MDP by constructing a minimized version based on
the impact of propositions on the utility. Due to the existence of multiple
factorizations per MDP, the proposed approach is non-deterministic and can result in
abstractions of varying quality and size. In any case, the minimization is adequate
and computable in polynomial time. The approach by Dean and Givan [32] also uses
a factored representation to find the coarsest homogenous refinement of any partition
of the MDP’s state space. The resulting reduced MDP is minimal in a well-defined
sense and can be used to find an optimal policy in the original MDP. Sadly, this
process is NP-hard. Simplifications of this process can run in polynomial time but
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cannot produce an optimal minimization. In contrast to exact abstractions, an
approximate abstraction can often be achieved in polynomial time [33, 34]. Thereby,
algorithms balance the coarseness of the abstraction with the quality of the obtained
solution from the abstract MDP.

The high complexity of bisimulation approaches often makes them infeasible for
very large state spaces. Approximate solutions can reduce the computational
complexity but may cause the agent to learn an invalid policy. Often the
approximation of the MDP can be iteratively improved at the cost of additional
computations. The problem is typically studied in the context of model-based
reinforcement learning [35], in which algorithms aim for a good balance between
building an internal model and improving their policy. Another solution to the
problem is the search for local abstractions of the MDP. In contrast, to the approaches
above, local abstractions only model a subgraph of the original MDP. Due to the
reduced size of the abstracted graph, such abstractions can be found much faster.
Jiang et al. have used this approach in the context of a UCT (MCTS using upper
confidence bounds as a selection criterion) to efficiently use the data generated from
previously simulated trajectories. Given a small budget of simulations, the local
abstractions have been shown to improve the performance of UCT.

3.2 State Aggregation Approaches

In homomorphic state abstraction, we construct a more compact state space and a𝑆’
mapping from to . The simplest way to do so is by discarding variables from our𝑆 𝑆’
state observation [36]. Thereby, we reduce the dimensionality of the state space and
often considerably shrink its size. Identifying suitable variables to discard can either
be done in communication with domain experts or as a result of feature analysis
[37–39]. For example, the approach by Jong and Stone [37] measures the relevance of
a variable in terms of its impact on the optimal policy. In case a variable does not
significantly change the decisions suggested by the policy, we can safely remove it
from our representation. Interesting about this method is that it preserves convergence
to the optimal policy, which cannot be ensured in expert-driven abstractions. In
contrast to filtering approaches, feature selection can also be done in a bottom-up
manner, i.e., starting with no features and adding the ones that improve the model
quality the most [40].

Instead of ignoring/selecting state variables to project a state into a subspace, we
can also group states into clusters [41–43]. Given the agent’s previous trajectories, we
can try to identify states with a similar policy, transition, or reward function to create
a more compact clustered representation. The aggregation of states into a soft/fuzzy
partition can result in more flexibility and model the agent’s confidence in the current
clustering [43]. This approach will become relevant once again in Section 4.3.

Whereas previous methods have mostly focused on reinforcement learning, state
aggregation can also be found in search-based algorithms. Most commonly, stochastic
search algorithms aim to group simulations based on their trajectories to evaluate
visited states more efficiently [44, 45]. Used approaches are similar to the ones
presented above but the feature selection is commonly applied in between iterations of
the search, may change over time, and therefore adapt to the current local context of
the agent’s state space.
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3.3 Representation Discovery Approaches

While the previous section discussed methods for reducing the complexity of an
existing state space into a representative subspace, representation discovery
approaches are used to intrinsically learn a state representation based on the original
input. Also homomorphic, representation discovery methods often construct
abstracted state spaces that bear not much resemblance but share properties of the
original state space. In recent work, deep neural networks, specifically, autoencoders
[46], have been used to process raw sensory data. Thereby, the network is learning a
compact feature vector in its hidden layers that are subsequently used for
decision-making. While being hard to interpret for the human observer in the general
domain, analysis of convolutional neural networks for image classification has shown
that hidden layers represent increasingly complex features of learned image classes
[47]. Resulting latent spaces can often be used as highly compact state abstractions.

A special form of convolution is implemented by graph convolutional networks
[48]. Those directly operate on graph structures and can therefore be used to create
latent representations of MDPs. A study by Jiang et al. [49] has shown their efficient
use in reinforcement learning. Finally, a work by Liu et al. [50] has used meta
descriptive statistics (MDS) as supplementary state representations. They compared
the MDS approach with abstractions obtained from autoencoders and graph
convolutional networks as well as combinations of all three methods. In their
evaluation, graph convolutional networks resulted in the best performance among the
single methods, whereas a combination of MDS and autoencoders performed best
overall.

3.4 Graph Compression Using High-Level Knowledge

An interesting application and challenging research domain of state abstraction
algorithms is pathfinding. Here, the agent is tasked to explore an environment and
find a (near-)optimal path to a given objective. Thereby, the agent either uses a model
of its surroundings or needs to create one while exploring the environment. In either
case, the time for planning shall be kept as low as possible while also minimizing the
length of the resulting path. Sadly, optimizing for one often worsens the performance
of the other since abstractions can reduce the planning time, but in many cases only
result in near-optimal solutions [51].

Generally, heuristics can be used to guide the agent’s search process [1]. In case the
same environment is used for multiple pathfinding queries, it might be useful to
preprocess the graph model to solve the queries in a more efficient abstract model of
the environment. Many algorithms do so by exploiting the highly regular structure of
grid-based path-finding problems. In contrast to arbitrary MDPs, the agent’s actions
and their meaning remain the same for every state. This allows the usage of simple
abstraction heuristics, such as the one used in HPA* [52]. Here, the graph is first
decomposed into a map of disjoint square sectors. To plan a path from the current
position to the target, we first plan a path from one square sector to another and later
refine the path in the original grid map. A multi-layered abstraction and refinement
process has been implemented in Partial Refinement A* (PRA*) [53]. Sturtevant later
proposed a combination of HPA* and PRA* to decrease the agent’s memory
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consumption [54]. The efficiency of real-time heuristic search has been further
improved by interweaving it with automatic state abstraction. The work by Bulitko et
al. [55] has shown huge performance gains over non-abstracting alternatives.

4 Action Abstractions

In terms of large action spaces, algorithms for decision-making struggle with
identifying the best actions during the exploration of a vast number of alternatives.
Like large state spaces, large action spaces lengthen the training time of reinforcement
learning algorithms and the time to explore the game tree in search-based algorithms.
The idea of action abstraction is to either narrow the search on a subset of promising
candidate actions (Section 4.1) or identify valuable action sequences to be used
(Section 4.2). Each of the two approaches (cf. Figure 2) will be discussed in the
following sections, respectively.

Fig. 2. Overview of the Types of Action Abstraction Algorithms.

4.1 Script-based Action Abstraction

Script-based action abstraction reduces the size of the action space by removing
inferior actions or focusing the search on a selection of good candidates. While this
approach loses granularity and is dependent on the accuracy of the candidate set, it
can drastically speed up the agent’s search process. A simple concept to retrieve
candidate actions is the use of scripts. A script is a subroutine that returns a candidate
action for any current state of the environment.

(2)𝑆𝑐𝑟𝑖𝑝𝑡:  𝑆→𝐴

Thereby, a single script is similar to a deterministic policy. In the context of strategy
game AI, scripts have been implemented by a set of rules that focus on a certain
strategy, e.g., attacking the closest opponent in the range [56]. Such games often
involve multiple entities that can be independently controlled by the agent by
selecting an entity’s action for each of them. An increasing number of such entities
(e.g., units, buildings, etc.) results in an exponentially growing combinatorial action
space [57, 58]. Due to the independence of multiple entities, scripts are often
constrained to a single entity and its respective actions in the context of multi-unit
strategy games. Similar implementations could be thought of for robots for which the
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agent controls multiple joints at the same time. In both cases, the output of a script
can be restricted to a single component under the agent’s control, and therefore, can
also be defined by:

(3)𝐸𝑛𝑡𝑖𝑡𝑦 𝑆𝑐𝑟𝑖𝑝𝑡:  𝑆 × 𝐸𝑛𝑡𝑖𝑡𝑦→ 𝐴
𝐸𝑛𝑡𝑖𝑡𝑦

The agent’s response is then determined by assigning one script to each entity and
building the combinatorial action out of the responses by all the scripts.

4.2 Portfolio-based Search Algorithms

While the use of a single script with high performance can already yield a
successful agent, the combination of multiple scripts has been shown to improve the
overall performance of the agent [29, 56]. Let a portfolio be given by a set of scripts,
whereas the abstracted action space is the union of all script responses for the current
state of the environment. Portfolio-based algorithms vary in the way they encode and
optimize the script selection/assignment. For instance, Portfolio Greedy Search (PGS)
[59] has been designed for combinatorial action spaces and optimizes the script
assignment to each independent entity. For this purpose, a hill-climbing procedure is
used to search for the best combination. In presence of an opponent, the opponent’s
and the player’s script choices are updated iteratively. Moraes et al. [60] have shown
that the devised hill-climbing procedure can suffer from non-convergence. To
overcome this issue, they proposed a nested greedy search (NGS) in which the best
opponent’s response is computed in each iteration. Nevertheless, this comes at the
drawback of being unable to evaluate many actions due to the increased time
complexity.

Other search and optimization algorithms have been used for improving the agent’s
performance. Portfolio Online Evolution (POE) [61] replaces the hill-climbing
procedure with an evolutionary algorithm [62]. Thereby, a candidate solution encodes
the script assignment for each controlled entity. Its fitness is determined by simulating
the outcome of continuously retrieving actions from a given script assignment.
Further on, mutation of a single candidate solution (e.g., randomly replacing a script
assignment) and crossover on multiple of these candidate solutions (e.g., uniform
crossover of script assignment) is used to search for candidate solutions of higher
fitness. In a similar manner to POE, the Portfolio Rolling Horizon Evolutionary
Algorithm (PRHEA) [56] uses evolution to optimize script assignments of fixed
length (so-called horizon). Each turn, the agent applies the first script of the best
candidate solution before reusing the population to initialize the search for the next
iteration. While this limits the search depth of the agent, it has shown efficiency in
optimizing script assignments in multiple strategy games.

Another layer of abstraction is introduced by Stratified Strategy Selection [63] and
Cluster-based UCT [64], which first groups the entities into types or clusters and then
assigns one script to each type. Given contextual knowledge of the environment, such
layered abstractions can improve the efficiency of the agent’s search. Some
environments may not allow the enforcement of a type system on all entities or define
a suitable abstraction for some of the entities under the agent’s control. In these cases,
an asymmetric action abstraction allows controlling entities at different layers of
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abstraction. While some may be safely abstracted or even grouped into types, others
will be restricted to using their original action space. Moraes and Lelis [65] have
proposed the methods Greedy Alpha-Beta Search and Stratified Alpha-Beta Search to
search in such asymmetric action abstractions. Additionally, they have shown that the
optimal strategy derived using an asymmetric action abstraction is at least as good as
using a uniform abstraction.

Another view on the search for combinatorial actions is offered by Naïve MCTS
[57], which solves it by a combinatorial multi-armed bandit. Hereby, a combination of
MCTS and naïve sampling, which considers each entity’s action as an independent
contribution to the combinatorial action’s reward, is used to optimize the actions for
each entity. While the naïve assumption might converge to a local optimum, the
guided naïve MCTS proposed by Yang and Ontanon [66] only uses the scripts as
recommenders during exploration and keeps the original action space in the tree.

Since previously discussed algorithms mostly differ in the way they structure and
sample the script space, a unification of PGS, NGS, POE, SSS, and Naïve MCTS has
been proposed by Lelis [67]. General Combinatorial Search for Exponential Action
Spaces (GEX) generalizes these algorithms by splitting the search process into
subprocesses consisting of select and expand, macro-arm sampling, evaluation, and
value propagation. Thereby, more instances of portfolio-based search algorithms can
be easily generated by choosing implementations of each subprocess.

The usage of deterministic scripts or their portfolios can result in repetitive
behavior. To avoid this, the algorithm puppet search [68], [69] introduced scripts with
choice points, which query the state’s properties to select an action. A search or
optimization process can further be used to modify the thresholds used in these choice
points to modify the agent’s behavior. This can result in a more reactive game-play
experience while adjusting the number of choice points can be an efficient way in
tuning the strength of the agent. Other strategies for diverse game-play include the
optimization of the portfolio composition [56] as well as the adjustment of search
parameters [70]. The simplicity of said approaches makes them approachable to game
designers who want to achieve more variety in the agent’s gameplay.  

4.3 Constructing Higher Level Actions

Another type of action abstraction can be found in the options framework [71].
Options are a temporal action abstraction of an MDP and represent closed-loop
policies for taking actions over a period of time. They can be considered high-level
actions that involve a whole sequence of actions. Each option is given by a tuple𝑜

(4)𝑜 =  (𝐼
𝑜
,  π

𝑜
,  β

𝑜
)

where is the initiation set that describes potential starting states in which the𝐼
𝑜
⊆𝑆

option can be applied, is the option policy used for retrieving actions whileπ
𝑜
 :  𝑆→𝐴

the option is active, and is the terminal condition which is returning 1 inβ
𝑜
 :  𝑆→[0, 1]

case the option has to be stopped after reaching a state .𝑠
During search or execution, agents can choose to apply available options as they

would apply an action. In contrast to script-based approaches, options increase the
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branching factor of the search tree by adding additional choices. At the same time,
they represent a shortcut to deeper layers of the tree, since if an option is once chosen
will remain to be active. Nevertheless, it is important to only add options if they have
the potential to reduce the agent’s training or search time. Otherwise, poorly chosen
options have been shown to slow down the learning or search process [72].

A simple option design that has successfully been used in search-based algorithms
are macro actions [73], e.g., repeating a chosen action for multiple time-steps [74],
[75]. Similarly, more intricate sub-routines or repeating sub-policies can be designed
or extracted from successful runs/play-traces [76]. Alternatively, options can be
learned e.g., by subgoal identification, whereas a subgoal decomposes the learning
problem into two smaller problems [72]. Ways for finding subgoals include the
identification of high reward, or high novelty states [77][78], bottlenecks in the state
space, or by taking other graph connectivity measures into account [79–81].

Continuous domains, in which the agent is unlikely to be in the same state multiple
times, pose special challenges for learning options. Due to the missing repetition of
the task and a single never-ending episode, the aim is to learn skills that can be used
later. Given a formal problem description, this can be done using problem
decomposition [82, 83], in which a task is simplified into multiple sub-tasks.

In case this is not possible, option learning needs to generalize the initial and target
states of an option to a set of states which are similar to each other [84]. The
similarity of states is exploited in their skill chaining algorithm. Once the goal is
reached, the agent starts with searching for an option that starts in the neighborhood
of the target state and therefore has a high likelihood of reaching said state. Next, we
search for an option that has a high likelihood to reach a state of the previous option’s
initiation set. The process is repeated and thereby multiple options are chained into a
high-level skill. Such skills are especially interesting for lifelong reinforcement
learning tasks, in which the agent faces a set of related tasks in environments that are
similar to each other [85]. Here, it is even more important to identify options that
transfer well between the different tasks and do not bloat up the search space. A work
by Brunskill and Li [86] shows that transferrable options can be learned and these are
-optimal for all the tasks the agent may encounter.ϵ

5 Conclusion and Future Directions

The papers presented in this survey have shown that abstractions can be used to
reduce the complexity of many tasks. Both state and action abstractions not just help
to reduce the agent’s training time, but also improve the agent’s performance and can
make it more robust to changes in its environment. At the same time, it is important to
study the theoretic bounds of these abstractions to ensure near-optimal behavior.
While many papers have focused on a formal analysis of the environment or the a
priori optimization of the abstraction, more work needs to be spent on identifying and
exploiting suitable abstractions at run-time. Especially, highly dynamic environments
may require the agent to add or drop abstractions depending on its current situation.

As a result, the agent needs to act under uncertainty about the accuracy and
suitability of its learned abstractions. To our surprise, this uncertainty and its impact
on the decision-making problem has not been the focus of attention yet. We believe
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that fuzzy decision-making techniques [87] would be key to finding a suitable
abstraction or forming a decision by consensus over multiple imperfect abstractions
[88]. Additionally, fuzzy models may play an integral part in transferring learned
abstractions to new environments, effectively allowing to reuse the model for similar
MDPs while keeping track of its reliability [89]. Finally, the rising complexity of
tackled decision-making problems results in an increased demand for explainable
models [90] that either support the user to understand the learned abstraction [91] or
the decisions made by the agent [92].
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